Table 10: Nurseries for Native Plants

Source: Chesapeake Bay Local Assistance Department, *Riparian Buffers Modification & Mitigation Guidance Manual*, Appendix E, September 2003. http://www.cblad.state.va.us/ripbuffstat.cfm

(Compiled by Nancy Arrington, former Horticulture Chair, Virginia Native Plant Society.)

Key: C Carnivorous Plants, F Ferns, G Grasses, H Herbaceous Plants, O Orchids, S Seed, W Woody Plants

[This is a list of nurseries whose stock is partially or entirely made up of native plants. It is not intended to be exclusive. There may be other nurseries stocking native plants as well. This is a list of suppliers and is not to be construed as an endorsement of those suppliers.]

<table>
<thead>
<tr>
<th>Nursery</th>
<th>Address</th>
<th>Phone/Fax</th>
<th>Email</th>
<th>Catalog Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Botanique</td>
<td>387 Pitcher Plant Ln.</td>
<td></td>
<td>botanique@pitcherplant.com</td>
<td>Free catalog; C</td>
</tr>
<tr>
<td>Edible Landscaping</td>
<td>361 Spirit Ridge Lane</td>
<td>434-361-9134</td>
<td></td>
<td>S1</td>
</tr>
<tr>
<td>Meadowview Biological Research Station</td>
<td>8390 Fredericksburg Turnpike</td>
<td>(804) 633-4336 / (804) 633-5056</td>
<td>meadowview@pitcherplant.org</td>
<td>On-line; C</td>
</tr>
<tr>
<td>The Salt and The Earth</td>
<td>P.O. Box 560</td>
<td>804-776-6985, 804-776-6324</td>
<td>alon@inma.net</td>
<td>For availability; G, H</td>
</tr>
<tr>
<td>Sassafras Farm</td>
<td>7029 Bray Rd.</td>
<td>804-642-0923</td>
<td>sassafras@3bubbas.com</td>
<td>SASE for list; F, G, H</td>
</tr>
</tbody>
</table>

Table 10 (continued, page 2 of 2)

Virginia Natives
P.O. Box D
Hume, VA 22639-0903
phone & fax: 540-364-1665
E-mail: vanatvs@erols.com
Mailorder catalog $1.50
retail by appointment
C, F, G, H, W

Lists of plants suggested for conservation, restoration and landscaping in Virginia and lots of other relevant information can be found care of Virginia’s Natural Heritage Program. <http://www.dcr.state.va.us/dnh/>

List of Nurseries for Native Plants from the Maryland Native Plant Society

Bobtown Nursery
16212 Country Club Rd.
Melfa VA 23410
(757) 787-8484

Joseph Brown Native Seeds & Plants
7327 Hoefork Lane
Gloucester Point VA 23062
(804) 642-0736

Pinelands Nursery
8877 Richmond Rd.
Toano, VA 23168
(800) 667-2729
Contact: Don Knezieck
sales@pinelandsnursery.com
www.pinelandsnursery.com

WaterWays Nursery
Sally Kurtz, 13015 Milltown Road, Lovettsville, VA 20180
(540) 822-5994
http://members.aol.com/wwnursery/index.html
(herbaceous only)
Figure 2: Planting Details

Figure 3: Planting Details for Bare Root Seedlings & Year Transplants

Two methods are illustrated for planting bare root seedlings and year transplants. The first is the Side-Hole Method, and the latter is Slit Method.

BARE ROOT SEEDLINGS AND YEAR TRANSPLANTS
(Taken from Section VII of *The Chesapeake Bay Riparian Handbook*. Palone, Roxanne S. and Albert H Todd, eds. 1998)

Generally, seedlings and year transplants should have the following characteristics when planted:
1. They should be at the same level that they were grown at the nursery. Look for the root collar to determine depth.
2. The roots should be straight down or spread out, but not curved, bent or doubled back to form a "U" or "J" shape.
3. The plant should be firmly tamped in removing any air pockets around the roots.
4. The plant should be in an upright position, even with the ground, not in a hole or on a mound of soil.

1. Drive grub hoe into ground, lift handle, and pull hoe back.
2. Place seedling against straight side at correct depth.
3. Fill bottom of hole and pack soil against roots.
4. Finish filling in soil and pack it with heel.
5. Firm around seedling with the feet.

Figure 7 - 8. The Side-Hole Method of Planting. (Sketch adapted from U.S. Forest Service and The Practice of Silviculture, Smith, 1986.)
Figure 3 (continued, page 2 of 2)

Figure 4: Installing Tree Protection Tubes

Installing Tree Protectors

3) The flared end of a Supertube is the top. Gently guide the Supertube down over the seedling, making sure the seedling doesn't get caught under the ties.

4) Fasten the ties loosely around the stake. Do not tighten them yet.

5) Place your gloved hand over the top of the Supertube and push down until the base of the tube sits 1/2 - 1" deep in the soil.

This is easiest to do right after planting when the soil is loose, or when the soil is moist.

If the soil is packed or dry, try this: Place a board on top of the Supertube (the board should be at least 6" x 6".) Pound the board with a mallet or hammer, to push the base of the Supertube ½ - 1" into the soil.

It is critical that the base of every Supertube be well seated in the soil.

6) Cinch the ties tight.

Installing Protective Net

The plastic net included with your shipment of Supertubes (2' and taller) prevents birds from entering the Supertube and harming themselves or the tree.

The net breaks down over 18 months in the sun. It is designed to allow buds to grow through. However, buds can get caught on the net. Each time you are checking your trees, remove the net from those Supertubes where the tree is a few inches from the top or has already emerged. Bird entry is not a problem after the tree emerges.

1) Expand the bottom of the net.

2) Pull the net 7-8" down the Supertube.

3) Adjust the net so that the ends of the net are just touching.

ON-LOT RUNOFF PRACTICES

On-Lot Runoff Practice Plan

Content:

- Vicinity Map, North Arrow
- Property Owner, address, contact and number for plan preparer if different than owner
- Proposed encroachment into the stream buffer (use, square footage, vegetation to be removed).
- Type of mitigation practice to be used. Manufacturers literature if appropriate
- Details on size, materials & installation
- Cross-section sketch with dimensions
- Maintenance plan & schedule
ON-LOT RUNOFF PRACTICES CONTENT

<table>
<thead>
<tr>
<th>ITEM</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-Lot Runoff Practices Links</td>
<td>39</td>
</tr>
<tr>
<td>Figure 5: Rain Garden Schematics from Prince George’s County, MD</td>
<td>40</td>
</tr>
<tr>
<td>Figure 6: Rain Garden Detail (Bioretention Planting Bed)</td>
<td>43</td>
</tr>
<tr>
<td>Figure 7: Dry Well Detail</td>
<td>44</td>
</tr>
<tr>
<td>Figure 8: Swale Infiltration Trench</td>
<td>45</td>
</tr>
<tr>
<td>Zero Discharge; water dispersal for small scale, high-density sites</td>
<td>46</td>
</tr>
</tbody>
</table>
ON-LOT RUNOFF PRACTICES LINKS

Low Impact Development Center – Downloadable fact sheets and information on low impact development plus many valuable links for rain gardens, bioretention, and other stormwater sites.
http://www.lowimpactdevelopment.org/index.htm

Rain Gardens of West Michigan, West Michigan Environmental Action Council – A very detailed site about planning and building rain gardens.
http://www.raingardens.org/Index.php

Virginia Department of Forestry, Rain Garden Site -- Basic information on the considerations of building a rain garden.

Prince George’s County, Maryland, Department of Environmental Resources, Bioretention – Detailed information on the design of bioretention areas, including a design guidelines, worksheets, and plant lists.
http://www.goprincegeorgescounty.com/Government/AgencyIndex/DER/PPD/LID/bioretenpion.asp?h=20&s=40&n=50&n1=160

http://www.dcr.virginia.gov/sw/stormwat.htm#handbook

Thomas Jefferson Soil & Water Conservation District, Rooftop Runoff Collection – Our local soil and water district is a state leader in promoting the harvesting of rooftop runoff through rain barrels, cisterns, and other devices.

Alliance for the Chesapeake Bay, Bayscapes Site – The Alliance promotes a landscaping approach that conserves water, is beneficial for wildlife, and protects water quality. The “Bayscapes” page contains information and many publications to download.
http://www.acb-online.org/project.cfm?vid=85
Figure 5: Rain Garden Schematics from Prince George’s County, Maryland

Source: How Does Your Garden Grow: A Reference Guide to Enhancing Your Rain Garden, Prince George’s County Department of Environmental Resources.

These schematics provide a sense of what a rain garden is and how rain gardens can fit into the overall lot landscaping. More specific rain garden design information can be found in the “Links” section, particularly the raingardens.org site.
Sample Rain Gardens

Customized Rain Gardens can vary tremendously. The Garden above features Cardinal Flowers and ornamental grasses such as Redtop and Tufted Hair Grass for beautiful color throughout the summer and early fall.

The Rain Garden below is designed primarily with low-maintenance shrubs that look great year-round and attract a variety of wildlife. The bark of the River Birch adds interesting texture and color to the Garden in winter.
Your Rain Garden can be a showplace in the spring. Plants such as Daylilies, iris, Viburnum, and Sweet Pepperbush thrive in the moist conditions of Rain Gardens.
Figure 6: Rain Garden Detail – Also Known as Bioretention Planting Bed

This detail can be used in conjunction with a landscape plan for an on-site rain garden (bioretention planting bed).
The dry well can be used to temporarily store and infiltrate rooftop runoff. Concerns with this design include: clogging (limited longevity) and difficulty of maintenance, especially compared to a surface feature such as a rain garden. Underlying soils are very important, and must be capable of exfiltrating the water. Also, the underground stone reservoir concept can be made into a “french drain” (long, narrow stone filled trench with perforated drainage pipe to daylight). The same concerns exist with longevity and maintenance, but these measures can be very helpful to correct drainage problems near a structure.
Figure 8: Swale Infiltration Trench

Source: City of Richmond, Chesapeake Bay Preservation Program, Public Information Manual, 1994

This design is another stone reservoir for storing and exfiltrating runoff water. It is designed to be placed strategically in the yard to intercept runoff from driveways, rooftops, and yards. Again, the underlying soils are critical, and must be able to percolate enough water to prevent the trench from clogging. Filter fabric under the trench should be replaced with approximately 3" of pea gravel (less prone to clogging).
On lot run off practices:
‘zero discharge; water dispersal for small scale high density sites’

low tech, plants not necessary approach to water dispersal on small sites

Contributed by Amy Ransom Arnold, ASLA
Member of the Charlottesville Planning Commission City Streams Task Force
Principle of land + form, llc
Albemarle County Landscape Planner
On lot run off practices:
‘zero discharge; water dispersal for small scale high density sites’

Rain gardens, dry wells, large stone trenches typically serve as single collection points for concentrated volumes of storm water run off. The intimacy of detail in a residential yard can also allow for a more dispersed approach to managing run off that depends primarily on multiple points of infiltration that may or may not include plantings. This system of allowing a large portion of total site run off to soak back into the earth in multiple locations, rather than a few areas and can be directly tied to the driveways, sidewalks, hedges, terraces on a small scale property and integrated into garden / yard detail. Each place of infiltration becomes a part of the design vocabulary of the yard. Rather than creating a single area to treat and absorb the total volume of site run off, the overall volume is dispersed throughout the site in smaller areas, drainage details become yard details.

Engineering details can be scaled down and used very locally to manage water on site. Every impermeable surface has its own infiltration area sized to handle its specific volume of run off in a matrix of trenches and drainage areas that are scattered throughout the site to absorb surface flow. The surface area of the infiltration area equals five percent (5%) impervious cover in drainage area. Water loving indigenous plants can be included as part of the system to help absorb water. The presence of plants in the system is determined by the interest of the resident in the maintenance of the plantings.

With or without heavy planting, the goal is to create an overall absorbent matrix, increasing permeability across the entire site, compensating integrally for every impermeable element:

*a driveway can have an integral infiltration area, sized for area of impermeable surface (see swale infiltration trench cross section in Figure 8)
*a concrete terrace becomes stone pavers set in stone dust (permeable compensates for impermeable)

*lawn is converted into a meadow planting (increase permeability, decrease sheet flow)
*soil pockets for water loving plants are dispersed among less permeable elements

*tree plantings increase (decrease sheet flow)

*garden beds replace turf (decrease sheet flow)

*concrete walkways become segmented paths alternating planting and paving (decrease sheet flow)
*stone filled trenches are placed to line pavement, flower beds, hedges and in circles or mounds around trees (see infiltration trench cross section)

*drainage details become garden details (small scale sand filter / rainwater rill carries roof downspout water)

Hedges and hedgerows of water loving plants that are slightly lower than the rest of the yard can be used to collect run off when they are made up of plant species that are adaptable to a variety of conditions, withstand both drought and wet soils. (refer to the recommended plant lists for rain gardens) Your rain garden can become a hedge serving as rain water management and formal garden element simultaneously. The same applies to tree groves, lines of trees or drifts of water loving perennials and grasses. Local stone and soil suppliers now carry bioretention (rain garden) soil media for use in rain gardens or in an overall integrated infiltration matrix.
By far the greatest source of storm water run off in a residential context is roofs. Green roofs have long been a part of design / construction vocabulary in Europe and are the most effective way to decrease roof water run off. The technology for green roof construction is surprisingly accessible. The internet provides multiple web sites that provide detailed information about the use of green roofs. Local soil and stone companies now carry multiple types of green roof media (soil).

Rain water valves installed in downspouts can collect run off from a green or conventional roof to storage tanks or a cistern, directing any overflow into a gravel trench filled with river stone, or a hedge that is slightly lower than its context and contains water loving plants (refer to the recommended plant lists for rain gardens). Gravel infiltration trenches and ‘wet hedges’ can be combined for maximum effect. Submersible pumps are an efficient way to make use of your collected water, saving money on watering your garden in the long run. With proper filtering, collected water can be used in drip irrigation systems.

By allowing for the integration of a matrix of infiltration and collection, planned as an overall system, the goal of zero discharge (run off) from a small lot or residential property is close to attainable. Certainly the run off contributed to the stream watershed becomes closer to the pre development conditions of the surrounding area and begins to compensate for the impact of a densely populated urban environment on our streams and rivers.
UPSLOPE STORMWATER CONTROLS

The purpose of upslope stormwater controls is to prevent concentrated flow from eroding, damaging, and/or short-circuiting the stream buffer area. Techniques may include energy dissipators, level spreaders, check dams, or detention facilities. Proper construction of these measures can be difficult, and construction oversight by the City is important.

Two measures are presented: (1) Level Spreader/Energy Dissipator detail used in Albemarle County (Figure 9), and (2) Energy Dissipator design from the Henrico County Environmental Program Manual (Section 9.01-1; Figures 10 and 11)

Figure 9: Level Spreader/Energy Dissipator
Henrico County's Energy Dissipator design can be used for upslope stormwater controls in order to avoid erosive flows from a storm sewer through the stream buffer. The City may adapt this design to specific site conditions based on sound engineering judgment.

Definition

An energy dissipator is a device that is used to convert concentrated stormwater runoff to sheet flow and is constructed at the end of all storm sewers or channels that outfall into a buffer.

Purpose

The purpose of an energy dissipator is to introduce storm flows into the buffer at a slower rate and spread the flow over a larger area than would normally occur with a storm sewer outfall. The energy dissipator allows for more efficient use of the buffer by spreading the storm flow over a wider area of the buffer.

Design Criteria

Energy dissipators are required at the end of all storm sewers and constructed/altered channels that outfall into Stream Protection Areas. The energy dissipators must be designed and constructed according to the following design criteria. All appropriate details must be included in the approved plans.

- As indicated in the following table, either Design A (Figure 10) or Design B (Figure 11) (refer to sketches) will be provided based on the pipe size and discharge (10-year storm) or the channel’s discharge (10-year storm).

<table>
<thead>
<tr>
<th>Pipe Diameter (in)</th>
<th>10-Year Peak Discharge (cfs)</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- The sides and bottom of the plunge pool excavation shall be lined with filter fabric underlining and Class AI rip rap in accordance with the Virginia Erosion and
The spreader weir section shall be constructed by excavating a trench to the depth and configuration shown, laying down hardware cloth and backfilling with VDOT No. 3 aggregate. The hardware cloth shall be galvanized steel, ½ inch mesh, 19 gauge. The hardware cloth shall be wrapped around the aggregate and timber as shown and the edges stapled to the top of the timber every 12” with ¾ inch galvanized steel staples.

The 6” x 6” treated timber shall be level.

Special considerations shall be made where a cross slope exists in the area of construction and outfall, and where there is a possibility that storm water may flow around and bypass the spreader weir. The contractor shall construct an additional timber and aggregate weir section as shown that ties back into existing grade.

A minimum of clearing and grading may be required downstream of the spreader weir section to insure free overflow of storm water over the weir. Generally, all clearing and grading shall be kept to a minimum, but where required, the disturbed area shall be planted with sod in accordance with the Virginia Erosion and Sediment Control Handbook, Third Edition, 1992, State Minimum Standards and Specifications Number 3.33. The sod shall be secured with netting and staples in accordance with Plate 3.33-2.

If installed at the end of county maintained storm sewer, the drainage easement must encompass the entire energy dissipator (dissipation section, plunge pool section, and spreader weir section) and provide an area 10 feet wide around the entire energy dissipator to provide for maintenance.

As indicated in the details, the dissipation section of the energy dissipator is outside the Stream Protection Area (SPA). The remaining components (plunge pool section and spreader weir section) of the energy dissipator will be in the upper twenty (20) feet of the SPA unless site constraints dictate otherwise and the Department of Public Works concurs.

Pollutant Removal

Each energy dissipator that is installed in conjunction with the SPA is assumed to result in 0.10 pound of pollutant removal.
Figure 10
Figure 11
6. Sample Plans

Two sample plans are included in this section: one for an on-lot runoff practice (bioretention planting bed) and the other for compensatory plantings. Both are for small-scale encroachments resulting from residential activities. These sample plans are only offered as examples. Plan preparers may use discretion in plan layout, as long as the minimum content is included, as listed in the Standard Details & Design Guidance (see page 14 for compensatory planting and page 37 for on-lot runoff practices).
On-Lot Runoff Practice Sample Plan

Proposed House Addition at 117 Meadowcreek Lane

Narrative
Owner: Betty & Ralph
Address: 117 Meadowcreek Lane, Charlottesville, VA 22901
Phone: 293-XXXX
Email: bettyandralph@meadowcreek.com
Tax Map & Parcel: 15-72-B(1)

Existing Conditions: Our existing house is right at the 100 foot stream buffer line, as measured from the top of the bank of Meadow Creek. The house was built in 1974, and the lot was platted in 1970. This lot was recorded prior to the City’s adoption of the Water Protection Ordinance. The existing buffer vegetation consists of woods with large, mature trees, generally within the first 50 feet of the buffer (closest to Meadow Creek), and lawn in the remaining buffer up to the house. The treeline extends beyond the 100 foot buffer line west of the house, where a steep slope drops down from the neighboring lot. This slope is approximately 25%. The backyard slopes to the northeast. These features are shown on the enclosed plan.

Proposed Use in the Stream Buffer: We are proposing to build a modest addition to our house for a study and den. The addition will have a footprint of 370 square feet. No more land will be disturbed than is necessary for the construction of this addition. The existing vegetation in the area of the proposed addition is grass and foundation plantings. Theoretically, the addition could be built on the west side of the house outside of the stream buffer. However, the steep slope and existing woods along that side would necessitate much more clearing, grading, and tree cutting (and much more damage to the buffer and its functions) than at the proposed location behind the house. The addition can be authorized by the City in accordance with the Water Protection Ordinance, Section 10-74(d)(1), as long as a mitigation plan is approved.

Proposed Mitigation: The proposed use in the stream buffer is quite small. We are proposing a bioretention planting bed with a minimum square footage of 150 square feet. The existing house and driveway all drain through the backyard, and this runoff is currently untreated. The new addition and as much of the existing house and driveway as practical will flow to the bioretention area. This is an area where we want to do some landscaping anyway, and the planting bed will fit into our yard landscape plans and allow us to continue to enjoy our backyard. We have no intention of cutting or encroaching into the existing forest that lines the banks of Meadow Creek (except for our son’s tree house). The bioretention planting bed will be constructed based on the attached diagram and plan. We will also place silt fence at the construction limits during construction to ensure that silt and sediment do not run towards the creek.

Maintenance: We will ensure that the bioretention planting bed will be maintained along with our other landscaping. Maintenance will generally include adding and replacing plants, annual mulching, and making sure that the bed does not pond water for long periods of time (more than 2 days).
Bioretention Planting Bed Plant List

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Botanical Name</th>
<th>Common Name</th>
<th>Size & Root Condition</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TREES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Betula nigra</td>
<td>River Birch</td>
<td>1 – 1-1/2” cal., B&B</td>
<td></td>
</tr>
<tr>
<td>SHRUBS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Cornus stolonifera</td>
<td>Red Twig Dogwood</td>
<td>18 – 24” CONT.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Hypericum densiflorum</td>
<td>St. John’s Wort</td>
<td>18” CONT.</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Hamamelis virginiana</td>
<td>Witch Hazel</td>
<td>18 – 24” CONT</td>
<td></td>
</tr>
<tr>
<td>PERENNIALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Lobelia cardinalis</td>
<td>Cardinal Flower</td>
<td>½ gallon cont.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Hemerocallis spp.</td>
<td>Daylily</td>
<td>Transplants</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Rudbeckia laciniata</td>
<td>Green-headed Coneflower</td>
<td>6” pot</td>
<td></td>
</tr>
<tr>
<td>GROUNDCOVER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Liriope spp.</td>
<td>Lily-turf</td>
<td>Plugs</td>
<td>18” o.c.</td>
</tr>
</tbody>
</table>

Note: Plants may be substituted based on availability. Additional plants may be added at the owner’s discretion.

Sample Plan for On-Lot Runoff Practice (page 3 of 4)
Sample Plan for On-Lot Runoff Practice (page 4 of 4)
Compensatory Planting Sample Plan

Proposed Deck at Buffet Residence

Narrative

Owner: Ryan Buffet
Address: 843 Riparian Way, Charlottesville, VA 22901
Phone: 293-XXXX
Email: ryan@moorescreek.com
Tax Map & Parcel: 50-12-A(1)

Existing Conditions: This lot has frontage on Moores Creek. The existing house, built in 1984, is within the 100 foot buffer line, measured from the top of the bank. Most of the existing buffer is currently grass, with scattered trees and shrubs. A narrow band of trees lines the bank of Moores Creek and extends up the northern property line.

Proposed Use in the Stream Buffer: A 400 square foot deck is proposed, as shown on the attached plan. Roughly half of the deck will be within the 100 foot stream buffer. No more land will be disturbed than is necessary for the construction of this addition. The existing vegetation in the area of the proposed addition is grass, except that the corner closest to the creek has some trees and shrubs that will need to be removed. These include 2 red oaks (10” and 12” caliper) and 4 spicebushes (5’ high). An additional red maple (8” caliper) will be removed, but is outside of the buffer (however, we are counting this as part of the vegetation that must be mitigated).

The proposed deck is no closer to Moores Creek than the existing house. The addition can be authorized by the City in accordance with the Water Protection Ordinance, Section 10-74(d)(1), as long as a mitigation plan is approved.

Proposed Mitigation: The construction of the deck within the buffer and removal of the trees and shrubs mentioned above will be mitigated through creating a compensatory buffer planting area closer to Moores Creek. This replanted buffer area will consist of 8 trees and 12 shrubs, as noted on the attached plan. The replanted area is currently turf and is only a few feet from the top of the streambank. In this regard, the compensation area will better aid the functions of the stream buffer to protect Moores Creek than the area to be impacted. All plant materials will be nursery stock and will be installed in accordance with the attached specifications. Planting will take place sometime between October 15 and December 15 of 2004.

Maintenance: All plants will be watered during the first growing season. Any plants that die during the first year will be replaced (during the fall of 2005). Otherwise, the area will be left to nature so that it can blend into the existing vegetation along Moores Creek.
Figure 13: Sample Plan for Compensatory Planting (page 2 of 3)